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Abstract 

There are very few instances in nature where hard geological boundaries exist.  In most cases, 
the geological mechanisms that generate a deposit are transitional in nature.  Some degree of 
overlap between geological units can be expected; however, conventional grade estimation 
usually treats the boundaries between geological units as hard boundaries. This is primarily due 
to the limitations of current estimation and simulation procedures. The sharing of grade samples 
across a boundary often has the effect of corrupting the representative statistics of the region of 
interest, particularly for simulation. 

We propose to use a linear model of coregionalization (LMC) to simulate grades using data from 
adjacent rock types.  Although the LMC is traditionally used to characterize the spatial 
variability of multiple properties in one rock type, we will show that it can be applied to model 
the spatial variability of one property across the boundary between multiple rock types.  
Specifically, the cross covariance between two different non-collocated data sets is calculated 
and the short-scale behavior is extrapolated.  This allows inference of the nugget effect of the 
cross covariance from the nugget effects of the direct covariances.  A full model of 
coregionalization can then be constructed.  This model allows the correlation of the grades 
across the boundaries to be captured through a legitimate spatial model of coregionalization, 
which can then be used to cokrige or cosimulate grades using data from adjacent rock types.  
This approach guarantees the correct reproduction of representative statistics of the individual 
geological units used for resource estimation.  

This proposed methodology is applied to a synthetic deposit, and compared to the conventional 
approach of modeling using hard boundaries.  It provides an appealing alternative to capture 
grade distribution for deposits where complex contacts between different rock types exist.  
Further, it will improve the resource estimation by reducing the uncertainty in transitional zones 
around boundaries. 

Introduction 

Mineral resource and ore reserve estimation requires a critical decision regarding the geological 
domains that will be used for the grade modeling, as well as the type of boundaries between these 
domains. The most common geostatistical techniques, such as kriging and sequential simulation, 
are based on strong assumptions of stationarity of the estimation domains.  
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Following the definition of the estimation domains, an analysis on how grades change across 
the boundaries between domains should be done. This validates the proposed units and 
determines the nature of their boundaries. Domain boundaries are often referred to as either 
‘hard’ or ‘soft’. Hard boundaries are found when an abrupt change in average grade or 
variability occurs at the contact between two domains, such as coal seams or sedimentary 
zinc deposits. In deposits where the disseminated mineralisation has a gradational nature, 
such as some porphyry Cu-Au deposits, and grades change transitionally across a boundary, 
the contact is referred to as a soft boundary.  

Soft boundaries are found in several types of deposits due to the transitional nature of the 
geological mechanisms involved in the formation of a deposit. There is often some degree of 
overlapping between geological grade controls. Nevertheless conventional grade estimation 
usually treats the boundaries between geological units as hard boundaries. This is primarily 
due to the limitations of current estimation and simulation procedures.  

Estimation with hard boundaries is straightforward since only the samples within the domain 
are used. Soft boundaries allow grades from multiple domains to be used in the estimation of 
each domain. Common practice is to share samples within a given zone of influence of one 
domain over the other. Samples from different domains are treated equal to those within the 
domain, that is, the same mean, variance and covariance model from the samples within the 
domain are assumed. This generally has the effect of changing the representative statistics of 
the domain of interest. This corruption of the final grades, especially in the transition zones, 
often dissuades practitioners from using soft boundaries. 

Correct representation of soft boundaries should ensure the reproduction of the correlation of 
the grades across the boundary. Boundaries are of special interest in short term mine planning 
and improved modelling of boundaries would benefit the design and operation stage in both 
underground and open pit deposits. 

We propose to use a conventional linear model of coregionalization (LMC) to simulate 
grades using data from adjacent domains.  Although the LMC is traditionally used to 
characterize the spatial variability of multiple properties or metal grades in one domain, we 
will show that it can be applied to model the spatial variability of one property across the 
boundary between multiple domains. A full model of coregionalization allows us to capture 
the spatial correlation of grades across the boundaries through a legitimate spatial model that 
can later be used to cokrige or cosimulate grades using data from adjacent domains.  This 
approach guarantees the correct reproduction of representative statistics of each geological 
domain and improves the resource estimation by reducing the uncertainty in transitional 
zones near boundaries. 

The proposed methodology is applicable when the correlation of the variable of interest 
between two adjacent rock types remains constant within both units and is due to an 
underlying common factor. One example could be the supergene zone in a porphyry copper 
deposit; supergene enrichment of these systems began as the portions above the water table 
are oxidized, transported in solution and precipitated below the ground water table by 
replacement of pre-existing iron sulfides. The mean and variance in the supergene zone is 
likely to be higher than the primary zone immediately below, but the spatial correlation 
structure will remain an underlying common factor because of the original mineralisation.  
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Theoretical Background 

The linear model of coregionalization (LMC) provides a method to model the cross 
covariance of two or more variables. The LMC model is legitimate, that is, the variance of 
any possible linear combination of these variables is always positive. Given a set of K second 
order stationary random variables, { },  1,...,kZ k K= , the LMC provides a means to model 

the cross covariance functions, ( )
k pZ ZCov h , k=1,…,K, p=1,…,K. 

Usually Zk and Zp represent different properties measured at the same location, for example, 
gold and copper grades. We consider that each random variable Zk, k=1,…,K corresponds to 
the variable of interest in each of the K geological domains or rock types. The model could 
also be used for multiple grades within multiple rock types. 

A linear model of coregionalization assumes that each variable Zk is a linear combination of n 
second order stationary independent random variables Yi with mean mi and variance σi

2, with 
i=1,…n. These n random variables are independent, that is, their cross covariances are zero: 

( ) 0,  and 
i jY YCov i j= ∀ ≠h h . Each Zk variable is assumed to be a linear sum of the 

independent factors: 

1
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n

k ki i
i

Z a Y k K
=

= =∑  

The coefficients aki can be positive, negative or zero. 

The mean of the kth stationary variable Zk is: 
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= =∑  

( ){ }2 2 2 2

1
 

        

n

k k k ki i
i

E Z m aσ σ
=

− = =∑  

The covariance of Zk at a vectorial distance h, can be calculated as an expression of the 
coefficients aki and the covariances of Yi  for i=1,…n: 

2

1
( ) ( )

k i

n

Z ki Y
i

Cov a Cov
=

= ∑h h  

The cross-covariance of Zk and Zp, ∀k≠p, with k,p=1,…,K can also be derived as a linear 
combination of Yi covariances and coefficients aki for Zk, and apj for Zp, i,j=1,…n, 
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But since Yi  is independent of Yj  there is no cross spatial correlation between Yi(u) and 
Yj(u+h), that is, { } { } { }( ) ( ) ( ) ( ) ,  i j i jE Y Y E Y E Y i j⋅ + = ⋅ + ∀ ≠u u h u u h . Then, 
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A linear model of coregionalization, with Zk and Zp representing the distribution of the 
variable of interest in rock type k and rock type p, respectively, is a legitimate spatial 
correlation model that yields the correct statistics at unsampled locations near the boundary 
where samples from both domains are used for the estimation or simulation. The calculated 
LMC spatial model can be used in cokriging or cosimulation to model locations near 
geological boundaries using samples from adjacent domains. This is a more consistent 
alternative to the estimation of domains with soft boundaries than assuming the grades are 
independent or from the same domain. 

Illustration of Theory 

To illustrate how a linear model of coregionalization can be used to characterize the spatial 
variability of multiple rock types, consider a 2D example with two domains. The 
corresponding random variables Z1 and Z2 were constructed as a linear combination of three 
underlying non-standard normal random variables: 

1 1 2 3

2 1 2 3

0.5 0.5 0.0

0.5 0.0 0.5

Z Y Y Y

Z Y Y Y

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅
 

where, 

Y1 ~ N(0.5,0.5) with 
1 max 200

min 200

( ) 0.05 0.45 ( )Y h
h

Sphγ = 
 = 

= + ⋅h h  

Y2  ~ N(2.0,1.0) with 
2 max 50

min 300

( ) 0.1 0.9 ( )Y h
h

Sphγ = 
 = 

= + ⋅h h    

Y3 ~ N(1.0,0.5) with 
3 max 400

min 100

( ) 0.05 0.45 ( )Y h
h

Expγ = 
 = 

= + ⋅h h  



301-5 

The random variables Yi were obtained by unconditional Gaussian simulation for a grid of 
1000 by 2000 meters. Ten realizations were simulated. 

The cross covariance between Z1 and Z2 was calculated and checked against its analytical 
model, 

1 2 1,

max 200
min 200

( ) 0.5 ( )

0.25 0.025 0.225 ( )
Z Z Y

h
h

Cov Cov

Sph = 
 = 

=

= − − ⋅

h h

h  (1) 

three different spatial arrangement of Z1 and Z2 were considered: (1) collocated (just as a 
check), (2) the two domains adjacent to each other (Figure 1A), and (3) the two domains 
merged (Figure 1B) using a categorical binary model obtained via a Boolean simulation 
program, ellipsim, that generate a 2D map of ellipsoids of variable size and anisotropies 
for a given target proportion (Deutsch and Journel, 1998). 

 

A BA B

 
Figure 1: Example of two domains and the corresponding categorical models. 

As a check of our derivations we compare the cross-covariance between Z1 and Z2 when both 
variables are collocated with the analytical derived model. As shown in Figure 2, the average 
variogram over all realizations is very close to the analytical model (Equation 1). The ergodic 
fluctuations associated with the different realization are very small. 

In the case where the two domains are side by side, the covariances correspond to the 
analytical model fairly well (Figure 3A), although configurations where the boundary is 
parallel to the major anisotropy of one of the domains (Z2 in this case), showed a 
systematically lower covariance at shorter lag distances than the analytical model (Equation 
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1), and the dispersion of the ergodic fluctuations is greater at lag distances near zero.  
Inference of the nugget effect of the cross covariance is more uncertain in geometrical 
configurations similar to this one. 

 

 
Figure 2: Cross-covariance reproduction of the simulated random variables Z1 and Z2, 
assuming both variables are collocated. The dots are the average taken over all realizations; 
individual realizations are in dashed lines; and the thin solid line corresponds to the analytical 
model. The analytical model is very close to the average over all realizations, which makes it 
difficult to differentiate the dots from the solid line. 

 

BA 

 
Figure 3: (A) Cross-covariance between Z1 and Z2 combined side by side. (B) Cross-
covariance between Z1 and Z2 combined using ellipsim categorical model as a boundary 
model with a target proportion of Z1 of 50%. The dots are the average taken over all 
realizations; individual realizations are in dashed lines; and the thin solid line corresponds to 
the analytical model. 

For the second scheme, using a circular shape with radius of 150 meters and three target 
proportions of 25, 50 and 75%, the cross covariance between the experimental points derived 
from the average over all realizations compares well with the analytical model (Figure 3B) 
(Equation 1). The fluctuations at short lag distances are small. This confirms our expectation 
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that when more contact surfaces between domains are available and are more irregularly 
oriented; the determination of the nugget effect should have less uncertainty, compared to the 
case where a single contact surface exists between the two domains. A completely straight or 
planar boundary gives the least possible surface area to the boundary.  This leads to the 
smallest possible transition zone between rock types and the fewest possible pairs for 
variogram calculation. This was also confirmed by a poorer reproduction at shorter lag 
distances, with lower covariances than the analytical model, when the target proportion of the 
domain Z1 was lower than 10%. In addition, when the proportion of one domain decreases, 
the dispersion of the ergodic fluctuations increases (Figure 4). 

 
 

 
Figure 4: Cross-covariance between Z1 and Z2 combined using ellipsim categorical model 
as a boundary model, for target proportion of Z1 of 5, 10, 20 and 50%. Note that as the target 
proportion of one of the domains decreases the experimental derived from the average over 
all showed a systematically lower covariance at shorter lag distances than the dashed 
analytical model. The dots are the average taken over all realizations; individual realizations 
are in dashed lines; and the thin solid line corresponds to the analytical model. 

Using the same synthetic examples, the impact of different drill hole data spacing was 
examined. Overall, the reproduction of the cross covariance analytical model is as good as 
when all simulated values were used, although a wider range of fluctuation between 
realizations is observed. If the data spacing is larger than the range of the cross-covariance, 
the calculation of a cross-covariance will be meaningless.  
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2D Example 

A real categorical geological model (Figure 5) was used to forecast the results for geometries 
of a real deposit. The grades, assumed to be percentage of copper, within the five rock types, 
Z1 to Z5 were constructed as a linear combination of four underlying non-standard normal 
random variables, 

Y1 ~ N(0.01,0.5)  with 
1 max 100

min 100

( ) 0.05 0.45 ( )Y h
h

Sphγ = 
 = 

= + ⋅h h  

Y2  ~ N(2.0,1.0)  with 
2 max 400

min 50

( ) 0.1 0.9 ( )Y h
h

Sphγ = 
 = 

= + ⋅h h  

Y3  ~ N(0.2,0.75)  with 
3 max 50

min 300

( ) 0.05 0.70 ( )Y h
h

Expγ = 
 = 

= + ⋅h h  

Y4  ~ N(0.75,1.5)  with 
4 max 400

min 250

( ) 0.3 1.2 ( )Y h
h

Expγ = 
 = 

= + ⋅h h  

where Y2 and Y4 have a 55° anisotropy. The coefficients that multiplied the underlying 
variables in the summation that originates Z1 to Z5 are: 

 

 Z1 Z2 Z3 Z4 Z5 

Y1 0.5 0.0 0.0 0.2 0.7  

Y2 0.0 0.7 0.2 0.0 0.0 

Y3 0.5 0.3  0.0 0.0 0.25

Y4 0.0 0.0 0.8  0.8  0.05

The variables Z1 up to Z5 were merged together using the categorical rock type model (Figure 
6) 
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Figure 5: Categorical rock type model. The arrows indicate the directions in which the cross-
covariance between domains was calculated. 

 

%Cu%Cu

 
Figure 6: A realization of the merged grades Z1 up to Z5 using the categorical rock type 
model of Figure 5.   
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The cross covariance was calculated for each pair of Zi and Zj, i≠j, in the directions sketch in 
Figure 5 and compared with the corresponding analytical model: 

max 50
min 300

max 100 max 50
min 100 min 300

max 400
min 50

( 0.29 0.019 0.271 ( )

( 0.561 0.047 0.266 ( ) 0.248 ( )

( 0.374 0.037 0.337

h
h

h h
h h

h
h

Cov ) Exp

Cov ) Sph Exp

Cov ) Sph

= 
 = 

= =   
   = =   

= 
 =

= − − ⋅

= − − ⋅ − ⋅

= − − ⋅

1 2

1 5

2 3

Z ,Z

Z ,Z

Z ,Z

h h

h h h

h

max 50
min 300

max 400
min 250

max 400
min 250

( )

( 0.206 0.014 0.192 ( )

( 1.2 0.24 0.96 ( )

( 0.3 0.06 0.24 ( )

( 0.487 0.079 0.168

h
h

h
h

h
h

Cov ) Exp

Cov ) Exp

Cov ) Exp

Cov )




= 
 = 

= 
 = 

= 
 = 

= − − ⋅

= − − ⋅

= − − ⋅

= − − ⋅

2 5

3 4

3 5

4 5

Z ,Z

Z ,Z

Z ,Z

Z ,Z

h

h h

h h

h h

h max 100 max 400
min 100 min 250

( ) 0.24 ( )h h
h h

Sph Exp= =   
   = =   

− ⋅h h

 

 

The experimental cross covariance obtained from the average overall realizations compares 
very well with the analytical models (Figure 7), except for the pairs Z3/Z4 and Z4/Z5, that have 
a side by side arrangement that shows lower covariances at shorter lag distances. 
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Figure 7: Cross-covariance reproduction of the simulated pairs Zi and Zj for i≠j, combined by 
the categorical rock type model. The experimental points correspond to the average over ten 
realizations, and the thin solid line corresponds to the analytical model. 
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Application 

A synthetic example was created in order to use a full LMC cosimulation and compare it with 
the results obtained from simulating two adjacent rock types independently.  The LMC model 
was obtained by calculating the cross variograms between values of the different domains 
and the direct variograms within each rock type. 

Using a similar methodology, two random variables, Z1 and Z2, generated as the linear 
combination of three underlying standard normal random variables were used to populate a 
synthetic geological model; this will be considered as the ‘true’ image (Figure 8) for 
comparison. The 2D reference image (2000 by 1000 meters, with a 10 meters grid spacing in 
both directions) was sampled at a spacing of 70 meters in the X-direction and 10 meters in 
the Y-direction yielding a total of 2800 samples. 

 

%Cu%Cu

 
Figure 8: Reference or ‘true’ image. Z1 is represented by RT1 (left), Z2 by  RT2 (right). 

Variograms were calculated from the normal scores transform values from each rock type, 
RT1 and RT2. Cross variograms can not be calculated if the variables are not collocated, 
which is the case here since we are trying to characterize the spatial variability across the 
boundary between RT1 and RT2. An alternative (Wawruch et. al. 2003) is to (1) calculate the 
cross covariance between the variables, (2) extrapolate the experimental points at lags near to 
zero to obtain the structured cross covariance (BZ1-Z2 ) (Figure 9), (3) determine the relative 
nugget effects for Z1 and Z2, and (4) calculate the sill of the cross variogram between Z1 and 
Z2 as: 

0 0

2 2

(0)
11
2

BCov
Cov Cov

σ σ

=
  
  − +

    

Z1 Z2

Z1 Z2

Z1-Z2
Z1-Z2  

In this example, the relative nugget effects obtained from the direct variograms of each rock 
type were both 0.1, the structured cross covariance was chosen at 0.4, so the sill of the cross 
variogram is 0.44. With this value the experimental points from the cross covariance can be 
inverted to obtain the cross variogram between Z1 and Z2.  
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Figure 9: Sketch with the structured cross covariance and calculated sill of a cross variogram 
given an experimental cross covariance between two non-collocated variables. 

As we discussed in the previous section, there will be some surface contacts that will present 
a higher uncertainty in the determination of the structured cross covariance. In this case, 
however, the nugget effect between the grade at each side of the boundary is not needed in 
any calculations because there are no collocated data nor do we estimate collocated grid 
blocks; most cokriging and cosimulation programs require the LMC to be defined with 
variogram models, which requires the nugget effect and the sill of the cross variogram.  

The direct and cross variograms of Z1 and Z2 were model using a linear model of 
coregionalization obtained by a semi-automatic variogram fitting program (Larrondo et. al., 
2003). Since independent simulations of Z1 and Z2 were also performed, the direct variograms 
of each variable were modeled independently. 

The cosimulation was performed using the full LMC cokriging option of the ultimate 
sgsim program (Deutsch and Zanon, 2002); in this case each rock type was simulated using 
the samples of the other rock type, as a secondary variable. For the comparative case, 
sequential Gaussian simulation with the same parameters was used to simulate each rock type 
independently as the contact between RT1 and RT2 was a hard boundary. 

The reproduction of the direct variograms for both the cosimulation and independent 
simulation was fairly good (Figure 10). Although the reproduction of the cross variogram 
was poor compared with the analytical model, the first 100 meters (total range) in the X-
direction showed a similar amount of correlation (Figure 11). The case where the contact 
between RT1 and RT2 was assumed to be a hard boundary, resulted in almost no correlation 
for lags less than the range of the cross variogram, and is significantly lower than the 
correlation of the conditional data across the boundary. This correlation is a remnant 
correlation from data, not from modeling. While for a soft boundary assumption, the 
correlation of the average over all realizations is closer to the correlation shown by the ‘truth’ 
reference.  
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Figure 10: Direct variograms reproduction for Z1 and Z2, cosimulated (right) and 
independently simulated (left). The dots represent the average of simulated values over ten 
realizations, the dashed line corresponds to the cross covariance calculated for the training 
image, and the solid line is the analytical model derived from the theoretical expression. 

 
Figure 11: Cross covariance reproduction for Z1 and Z2, cosimulated (right) and 
independently simulated (left). In a soft boundary scheme (right) the correlation between the 
simulated values is very close to the ‘truth’ reference. In the hard boundary assumption, the 
correlation at short lag distances is significantly lower. The dots represent the average of 
simulated values over ten realizations, the dash line correspond to the cross covariance 
calculated for the training image, and the solid line is the analytical model derived from the 
theoretical expression. 
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Cross validation of the model obtained by independently simulating Z1 and Z2 showed that 
the model is accurate and precise (Deutsch, 2002). The cosimulated model is also accurate, 
and equally precise for RT1, while for RT2 is slightly less precise than the model obtained 
from independent simulations (Figure 12). This is not surprising since the fitted LMC model 
for this rock type did not fit the data as well as for RT1.  This is a common disadvantage 
when using a linear model of coregionalization. The cosimulated model did, however, show 
less smoothing (Figure 13), which translates to less conditional bias in the estimation. 

Although both model are similarly accurate and precise the overall uncertainty, defined as the 
average kriging variance of all samples, is significantly lower for the cosimulated model (0.3 
for both Z1 and Z2) than for the independently simulated model (0.62 for Z1 and 0.91 for Z2). 

 

 
Figure 12: Accuracy plot for Z1and Z2, estimate independently (left) versus cosimulated 
(right). Cross validation show that the models from independent simulation or cosimulation 
of Z1 are accurate and precise. For Z2 the parameters used for cosimulation results a slightly 
less precise model than in the case of independent simulation. 

The distribution of errors (true-estimated) should be symmetric and centered at zero, as 
occurs for both schemes, but the standard deviation of the errors for cokriged estimates is 
significantly lower than independently kriged values; 0.56 against 0.75 for Z1 and 0.45 
against 0.95 for Z2. 
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The cumulative distribution of back transformed simulated values shows a very good 
reproduction of the data histograms, for both schemes. The target mean and variance are well 
reproduced for both cosimulation and independent simulations. 

 

 
Figure 13: Cross validation of data values in RT1 and RT2, estimate independently (left) 
versus cosimulated (right). The cokriging cross validation shows far less conditional bias and 
a much higher correlation than the estimation of each rock type independently, especially for 
RT2. 

Comparison at the boundary 

In order to compare the performance of the two methods, we need to focus on the results near 
the boundary where we can expect to have greater differences. 

One comparison was done using the expected value (E-type value) in original units at each 
location compared to the ‘true’ value in the reference map. The expected value is the average 
of the simulated realizations at each location. The block values obtained from cosimulation 
show systematically higher correlation coefficients with the true values. As expected, the 
difference between the two methods becomes smaller beyond the range of correlation of the 
cross variogram (Figure 14). 
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Figure 14: Correlation coefficient between E-type estimates of cosimulated and 
independently simulated models, and the “true” values considering blocks within a given 
distance from the boundary between Z1 and Z2. The higher correlation coefficient with the 
true values shown by the blocks estimated by cosimulation indicate this model better 
represents the underlying correlation that exists between Z1 and Z2. 

The variance of the blocks from each realization within a given distance from the boundary 
was also compared. As expected, the average of the variance over all the realizations showed 
lower variance for the block values obtained using cosimulation (Figure 15). This variance is 
also closer to the average variance calculated from the same group of blocks in the ‘true’ 
reference map. 

Conclusions 

The geological mechanisms involved in the formation of a deposit are in most cases 
transitional in nature, which yields contacts between domains that are diffuse or gradational. 
These soft boundaries are widespread in different types of deposits and their correct 
reproduction by geostatistical methods has a great impact on mine plan design, expected 
dilution and final mineral resources. The areas close to contacts are usually areas of higher 
uncertainty. 

The estimation of a domain with a soft boundary implies that samples from either side of the 
boundary should be used in the estimation. A common practice is to include samples or 
previously estimated nodes from outside the domain within a certain distance. Whether 
kriging or simulation is used, the assumption that the samples or nodes outside the domain 
follow the same distribution and spatial model as the samples inside is often incorrect and 
lead to the corruption of the statistical parameters near the boundary.  
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Figure 15: Average variance calculated from blocks within a given distance from the 
boundary between Z1 and Z2. The average variance obtained from cosimulation is lower than 
the variance obtained from independent simulations. The difference between the two methods 
decreases as we consider blocks further away from the boundary, where the influence of the 
data from the adjacent rock type in the cosimulation decreases. The average variance from 
cosimulated blocks is closer to the variance of the same blocks in the ‘true’ reference map, 
than the average variance obtained from independent simulations. 

A linear model of coregionalization (LMC) can be used to capture the spatial correlation of 
the variable across a boundary between domains. This model allows the correlation of the 
grades across the boundaries to be captured through a legitimate spatial model of 
coregionalization, which can then be used to cokrige or cosimulate grades using data from 
adjacent rock types. This approach guarantees the correct reproduction of representative 
statistics of the individual geological units used for resource estimation. 

This approach, assumes that the variable is stationary in each domain, and therefore can be 
used to model a global correlation across a boundary. However, nature provides us with 
several examples where the behavior of our variable of interest is no longer stationary as it 
gets closer to a boundary. Modeling of local non-stationary soft boundaries is addressed in 
Larrondo and Deutsch (2004).  

The proposed methodology in this contribution has the advantage of improved resource 
estimation by reducing the uncertainty in transitional zones near boundaries and reproducing 
the correlation of the conditioning data across a soft boundary. It also shows a decrease of 
smoothing in the estimates if kriging is the tool to obtain the resources. 
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